Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(3): 698-719, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205641

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS: We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS: Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHß antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3ß (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3ß/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS: FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Neoplasias da Próstata , Animais , Masculino , Camundongos , Antagonistas de Androgênios/efeitos adversos , Androgênios/deficiência , Aterosclerose/patologia , Endotélio/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Glicogênio Sintase Quinase 3 beta , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Inflamação/etiologia , Monócitos/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Testosterona
2.
Nat Commun ; 14(1): 6457, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833282

RESUMO

Mechanotransduction in endothelial cells is critical to maintain vascular homeostasis and can contribute to disease development, yet the molecules responsible for sensing flow remain largely unknown. Here, we demonstrate that the discoidin domain receptor 1 (DDR1) tyrosine kinase is a direct mechanosensor and is essential for connecting the force imposed by shear to the endothelial responses. We identify the flow-induced activation of endothelial DDR1 to be atherogenic. Shear force likely causes conformational changes of DDR1 ectodomain by unfolding its DS-like domain to expose the buried cysteine-287, whose exposure facilitates force-induced receptor oligomerization and phase separation. Upon shearing, DDR1 forms liquid-like biomolecular condensates and co-condenses with YWHAE, leading to nuclear translocation of YAP. Our findings establish a previously uncharacterized role of DDR1 in directly sensing flow, propose a conceptual framework for understanding upstream regulation of the YAP signaling, and offer a mechanism by which endothelial activation of DDR1 promotes atherosclerosis.


Assuntos
Receptor com Domínio Discoidina 1 , Receptores Proteína Tirosina Quinases , Receptor com Domínio Discoidina 1/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Mecanotransdução Celular , Células Endoteliais/metabolismo , Transdução de Sinais
3.
Cell Mol Life Sci ; 80(10): 283, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688662

RESUMO

Dendritic cells (DCs) can mediate immune responses or immune tolerance depending on their immunophenotype and functional status. Remodeling of DCs' immune functions can develop proper therapeutic regimens for different immune-mediated diseases. In the immunopathology of autoimmune diseases (ADs), activated DCs notably promote effector T-cell polarization and exacerbate the disease. Recent evidence indicates that metformin can attenuate the clinical symptoms of ADs due to its anti-inflammatory properties. Whether and how the therapeutic effects of metformin on ADs are associated with DCs remain unknown. In this study, metformin was added to a culture system of LPS-induced DC maturation. The results revealed that metformin shifted DC into a tolerant phenotype, resulting in reduced surface expression of MHC-II, costimulatory molecules and CCR7, decreased levels of proinflammatory cytokines (TNF-α and IFN-γ), increased level of IL-10, upregulated immunomodulatory molecules (ICOSL and PD-L) and an enhanced capacity to promote regulatory T-cell (Treg) differentiation. Further results demonstrated that the anti-inflammatory effects of metformin in vivo were closely related to remodeling the immunophenotype of DCs. Mechanistically, metformin could mediate the metabolic reprogramming of DCs through FoxO3a signaling pathways, including disturbing the balance of fatty acid synthesis (FAS) and fatty acid oxidation (FAO), increasing glycolysis but inhibiting the tricarboxylic acid cycle (TAC) and pentose phosphate pathway (PPP), which resulted in the accumulation of fatty acids (FAs) and lactic acid, as well as low anabolism in DCs. Our findings indicated that metformin could induce tolerance in DCs by reprogramming their metabolic patterns and play anti-inflammatory roles in vitro and in vivo.


Assuntos
Doenças Autoimunes , Metformina , Humanos , Metformina/farmacologia , Metabolismo dos Lipídeos , Ciclo do Ácido Cítrico , Ácidos Graxos , Células Dendríticas
4.
Theranostics ; 13(13): 4392-4411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649604

RESUMO

Background: Increasing evidence suggests that hemodynamic disturbed flow induces endothelial dysfunction via a complex biological process so-called endothelial to mesenchymal transition (EndoMT). Recently, DNA methyltransferases (DNMTs) was reported as a key molecular mediator to promote EndoMT. Our understanding of how DNMTs, particularly the maintenance DNMTs, DNMT1, coordinate EndoMT is still lacking. Methods: A parallel-plate flow apparatus and perfusion devices were used to apply fluid with endothelial protective pulsatile shear (PS, to mimic the laminar flow) or harmful oscillatory shear (OS, to mimic the disturbed flow) to cultured endothelial cells (ECs). Endothelial lineage tracing mice and conditional EC Dnmt1 knockout mice were subjected to a surgery of carotid partial ligation to generate the flow-accelerated atherogenesis models. Western blotting, quantitative RT-PCR, immunofluorescent staining, methylation-specific PCR, chromatin immunoprecipitation, endothelial functional assays, and assessments for neointimal formation and atherosclerosis were performed. Results: Inhibition of DNMTs with 5-aza-2'-deoxycytidine (5-Aza) suppressed the disturbed flow/OS-induced EndoMT, both in cultured cells and the endothelial lineage tracing mice. 5-Aza also ameliorated the downregulation of aldehyde dehydrogenases (ALDHs) and ß-alanine biosynthesis caused by disturbed flow/OS. Knockdown of the ALDH family proteins, ALDH2, ALDH3A1, and ALDH6A1, showed an EndoMT-induction effect as OS. Supplementation of cells with the functional metabolites of ß-alanine, carnosine and acetyl-CoA (acetate), reversed EndoMT, likely via inhibiting the phosphorylation of Smad2/3. Endothelial-specific knockout of Dnmt1 protected the vasculature from disturbed flow-induced remodeling and atherosclerosis. Conclusions: Endothelial DNMT1 acts as one of the key epigenetic factors to mediate the hemodynamically regulated EndoMT at least through repressing the expression of ALDH2, ALDH3A1, and ALDH6A1. Supplementation with carnosine and acetate may have a great potential in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Carnosina , DNA (Citosina-5-)-Metiltransferase 1 , Animais , Camundongos , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial , Azacitidina , Metilases de Modificação do DNA , Células Endoteliais , Homeostase , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
5.
NPJ Regen Med ; 8(1): 29, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291182

RESUMO

Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.

6.
Matrix Biol ; 119: 1-18, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958467

RESUMO

Decreased vascular compliance of the large arteries as indicated by increased pulse wave velocity is shown to be associated with atherosclerosis and the related cardiovascular events. The positive correlation between arterial stiffening and disease progression derives a hypothesis that softening the arterial wall may protect against atherosclerosis, despite that the mechanisms controlling the cellular pathological changes in disease progression remain unknown. Here, we established a mechanical-property-based screening to look for compounds alleviating the arterial wall stiffness through their actions on the interaction between vascular smooth muscle cells (VSMCs) and the wall extracellular matrix (ECM). We found that echinatin, a chalcone preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata), reduced the stiffness of ECM surrounding cultured VSMCs. We examined the potential beneficial effects of echinatin on mitigating arterial stiffening and atherosclerosis, and explored the mechanistic basis by which the compound exert the effects. Administration of echinatin in mice fed on an adenine diet and in hyperlipidemia mice subjected to 5/6 nephrectomy mitigated arterial stiffening and atherosclerosis. Mechanistic insights were gained from the RNA-sequencing results showing that echinatin upregulated the expression of glutamate cysteine ligases (GCLs), both the catalytic (GCLC) and modulatory (GCLM) subunits. Further study indicated that upregulation of GCLC/GCLM in VSMCs by echinatin maintains the homeostasis of glutathione (GSH) metabolism; adequate availability of GSH is critical for counteracting arterial stiffening. As a consequence of regulating the GSH synthesis, echinatin inhibits ferroptosis and matrix remodeling that being considered two contributors of arterial stiffening and atherosclerosis. These data demonstrate a pivotal role of GSH dysregulation in damaging the proper VSMC-ECM interaction and uncover a beneficial activity of echinatin in preventing vascular diseases.


Assuntos
Aterosclerose , Chalconas , Camundongos , Animais , Chalconas/metabolismo , Músculo Liso Vascular/metabolismo , Análise de Onda de Pulso , Artérias , Aterosclerose/metabolismo , Homeostase , Glutationa/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
Small ; 19(2): e2204694, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403215

RESUMO

Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow. By employing a mouse model of carotid partial ligation, superior targeting and higher accumulation of the disk-shaped particles are also demonstrated within disturbed flow areas than that of the spherical particles. In hyperlipidemia mice, administration of disk-shaped particles loaded with hypomethylating agent decitabine (DAC) displays greater anti-inflammatory and anti-atherosclerotic effects compared with that of the spherical counterparts and exhibits reduced toxicity than "naked" DAC. The findings suggest that shaping nanoparticles to disk is an effective strategy for promoting their delivery to atheroprone endothelia.


Assuntos
Aterosclerose , Nanopartículas , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Artérias Carótidas
8.
Circ Res ; 132(1): 87-105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36475898

RESUMO

BACKGROUND: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS: We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS: We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS: These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.


Assuntos
Via de Sinalização Hippo , Histidina , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Colágeno , Colágeno Tipo I
9.
Rev. bras. med. esporte ; 29: e2023_0043, 2023. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1431627

RESUMO

ABSTRACT Introduction: As a comprehensive sport, Marathon presents high demands concerning the athletes' comprehensive capacity. Objective: This paper explores to what extent balance skill training can effectively contribute to improving physical fitness for marathon runners. Methods: 120 marathon runners were selected for the pilot experiment. The experimental group received balance training, while the control group underwent no intervention. Results: In the experimental group, the time with eyes closed and feet apart increased from 33.559 ± 15.8570 to 37.203 ± 15.5865s, the time spent in the T-shaped run from 10.144 ± 0.5063s to 9.908 ± 0.5225s, the time spent in the standing long jump from 2.831 ± 0.2648m to 3.058 ± 0.3183m, and the time spent in the T-shaped run from 55.544 ± 2.2581 to 60.845 ± 2.4367 times/min. The total FMS score changed from 14.618 ± 0.9392 to 18.481 ± 1.3909. Shoulder flexibility increased from 2.777 ± 0.4756 to 2.917 ± 0.2994, and active straight knee raise changed from 2.306 ± 0.4692 to 2.803 ± 0.403. Conclusion: Daily balance training can be added to usual marathon training to improve the fitness of its athletes. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.


RESUMO Introdução: A maratona, enquanto esporte integral, apresenta altas exigências relativas à capacidade plena dos atletas. Objetivo: Este artigo tenta explorar em que medida o treinamento da habilidade de equilíbrio pode efetivamente contribuir para o aprimoramento da aptidão física aos praticantes do esporte de corrida de maratona. Métodos: 120 corredores de maratona foram selecionados para o experimento piloto. O grupo experimental recebeu treinamento de equilíbrio, enquanto o grupo de controle não sofreu qualquer intervenção. Resultados: No grupo experimental, o tempo com olhos fechados e pés separados aumentou de 33,559 ± 15,8570 para 37,203 ± 15,5865s, o tempo gasto na corrida em forma de T de 10,144 ± 0,5063s para 9,908 ± 0,5225s, o tempo gasto no salto em pé em distância de 2,831 ± 0,2648m para 3,058 ± 0,3183m, e o tempo gasto na corrida em forma de T de 55,544 ± 2,2581 para 60,845 ± 2,4367 vezes/min. A pontuação total de FMS mudou de 14,618 ± 0,9392 para 18,481 ± 1,3909. A flexibilidade do ombro aumentou de 2,777 ± 0,4756 para 2,917 ± 0,2994, e o levantamento reto do joelho ativo mudou de 2,306 ± 0,4692 para 2,803 ± 0,403. Conclusão: O treinamento de equilíbrio diário pode ser adicionado ao treino de maratona habitual para melhorar a aptidão física de seus atletas. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción: El maratón, como deporte integral, presenta grandes exigencias en cuanto a la capacidad integral de los atletas. Objetivo: Este trabajo pretende explorar hasta qué punto el entrenamiento de las habilidades de equilibrio puede contribuir eficazmente a la mejora de la condición física de los corredores de maratón. Métodos: Se seleccionaron 120 corredores de maratón para el experimento piloto. El grupo experimental recibió entrenamiento de equilibrio, mientras que el grupo de control no se sometió a ninguna intervención. Resultados: En el grupo experimental, el tiempo con los ojos cerrados y los pies separados aumentó de 33,559 ± 15,8570 a 37,203 ± 15,5865s, el tiempo empleado en la carrera en forma de T de 10,144 ± 0,5063s a 9,908 ± 0,5225s, el tiempo empleado en el salto de longitud de pie de 2,831 ± 0,2648m a 3,058 ± 0,3183m, y el tiempo empleado en la carrera en forma de T de 55,544 ± 2,2581 a 60,845 ± 2,4367 veces/min. La puntuación total de FMS pasó de 14,618 ± 0,9392 a 18,481 ± 1,3909. La flexibilidad de los hombros aumentó de 2,777 ± 0,4756 a 2,917 ± 0,2994, y la elevación activa de la rodilla pasó de 2,306 ± 0,4692 a 2,803 ± 0,403. Conclusión: El entrenamiento diario del equilibrio puede añadirse al entrenamiento habitual de maratón para mejorar la forma física de sus atletas. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.

10.
J Immunol ; 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36427008

RESUMO

Abnormally high follicle-stimulating hormone (FSH) has been reported to associate with cardiovascular diseases in prostate cancer patients with specific androgen deprivation therapy and in menopausal women. All of the cardiovascular diseases were involved in atherosclerosis. However, the pathogenic mechanism of FSH-associated atherosclerosis remains uncertain. Apolipoprotein E-deficient mice were chosen to develop atherosclerosis, of which the plaques were analyzed with administration of short- and long-term FSH imitating androgen deprivation therapy-induced and menopausal FSH elevation. The study showed that short- and long-term exposure of FSH significantly accelerated atherosclerosis progression in apolipoprotein E-deficient mice, manifested as strikingly increased plaques in the aorta and its roots, increased macrophage content, reduced fibrin, and an enlarged necrotic core, suggesting a decrease in plaque stability. Furthermore, expression profiles from the Gene Expression Omnibus GSE21545 dataset revealed that macrophage inflammation was tightly associated with FSH-induced atherosclerotic progression. The human monocyte cell line THP-1 was induced by PMA and worked as a macrophage model to detect inflammatory factors and cellular functions. FSH remarkably promoted the expression of IL-1ß in macrophages and strikingly increased the chemotactic migratory capacity of macrophages toward MCP-1, but the promigratory capacity of FSH was attenuated in foam cells. Overall, we revealed that FSH significantly promoted the inflammatory response and migration of macrophages, thereby provoking atherosclerosis development.

11.
J Immunol ; 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368721

RESUMO

Abnormally high follicle-stimulating hormone (FSH) has been reported to associate with cardiovascular diseases in prostate cancer patients with specific androgen deprivation therapy and in menopausal women. All of the cardiovascular diseases were involved in atherosclerosis. However, the pathogenic mechanism of FSH-associated atherosclerosis remains uncertain. Apolipoprotein E-deficient mice were chosen to develop atherosclerosis, of which the plaques were analyzed with administration of short- and long-term FSH imitating androgen deprivation therapy-induced and menopausal FSH elevation. The study showed that short- and long-term exposure of FSH significantly accelerated atherosclerosis progression in apolipoprotein E-deficient mice, manifested as strikingly increased plaques in the aorta and its roots, increased macrophage content, reduced fibrin, and an enlarged necrotic core, suggesting a decrease in plaque stability. Furthermore, expression profiles from the Gene Expression Omnibus GSE21545 dataset revealed that macrophage inflammation was tightly associated with FSH-induced atherosclerotic progression. The human monocyte cell line THP-1 was induced by PMA and worked as a macrophage model to detect inflammatory factors and cellular functions. FSH remarkably promoted the expression of IL-1ß in macrophages and strikingly increased the chemotactic migratory capacity of macrophages toward MCP-1, but the promigratory capacity of FSH was attenuated in foam cells. Overall, we revealed that FSH significantly promoted the inflammatory response and migration of macrophages, thereby provoking atherosclerosis development.

12.
Adv Sci (Weinh) ; 9(32): e2203995, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106364

RESUMO

Vascular smooth muscle cells (SMCs) can adapt to changes in cellular geometric cues; however, the underlying mechanisms remain elusive. Using 2D micropatterned substrates to engineer cell geometry, it is found that in comparison with an elongated geometry, a square-shaped geometry causes the nuclear-to-cytoplasmic redistribution of DNA methyltransferase 1 (DNMT1), hypermethylation of mitochondrial DNA (mtDNA), repression of mtDNA gene transcription, and impairment of mitochondrial function. Using irregularly arranged versus circumferentially aligned vascular grafts to control cell geometry in 3D growth, it is demonstrated that cell geometry, mtDNA methylation, and vessel contractility are closely related. DNMT1 redistribution is found to be dependent on the phosphoinositide 3-kinase and protein kinase B (AKT) signaling pathways. Cell elongation activates cytosolic phospholipase A2, a nuclear mechanosensor that, when inhibited, hinders AKT phosphorylation, DNMT1 nuclear accumulation, and energy production. The findings of this study provide insights into the effects of cell geometry on SMC function and its potential implications in the optimization of vascular grafts.


Assuntos
Músculo Liso Vascular , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Liso Vascular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metilação de DNA/genética , Mitocôndrias/metabolismo , Metabolismo Energético
14.
Bioact Mater ; 17: 406-424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35386458

RESUMO

Vascular smooth muscle cell (vSMC) is highly plastic as its phenotype can change in response to mechanical cues inherent to the extracellular matrix (ECM). VSMC may be activated from its quiescent contractile phenotype to a proinflammatory phenotype, whereby the cell secretes chemotactic and inflammatory cytokines, e.g. MCP1 and IL6, to functionally regulate monocyte and macrophage infiltration during the development of various vascular diseases including arteriosclerosis. Here, by culturing vSMCs on polyacrylamide (PA) substrates with variable elastic moduli, we discovered a role of discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that binds collagens, in mediating the mechanical regulation of vSMC gene expression, phenotype, and proinflammatory responses. We found that ECM stiffness induced DDR1 phosphorylation, oligomerization, and endocytosis to repress the expression of DNA methyltransferase 1 (DNMT1), very likely in a collagen-independent manner. The DDR1-to-DNMT1 signaling was sequentially mediated by the extracellular signal-regulated kinases (ERKs) and p53 pathways. ECM stiffness primed vSMC to a proinflammatory phenotype and this regulation was diminished by DDR1 inhibition. In agreement with the in vitro findings, increased DDR1 phosphorylation was observed in human arterial stiffening. DDR1 inhibition in mouse attenuated the acute injury or adenine diet-induced vascular stiffening and inflammation. Furthermore, mouse vasculature with SMC-specific deletion of Dnmt1 exhibited proinflammatory and stiffening phenotypes. Our study demonstrates a role of SMC DDR1 in perceiving the mechanical microenvironments and down-regulating expression of DNMT1 to result in vascular pathologies and has potential implications for optimization of engineering artificial vascular grafts and vascular networks.

15.
Biochem Biophys Res Commun ; 607: 166-173, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381387

RESUMO

Von Willebrand Factor (VWF) can promote platelet adhesion to the post-atherosclerotic regions to initiate thrombosis. The synthesis and secretion of VWF are important functions of endothelial cells (ECs). However, the mechanism through which blood flow regulates endothelial secretion of VWF remains unclear. We utilized a parallel-plate flow apparatus to apply fluid shear stress to human umbilical vein endothelial cells (HUVECs). Compared with pulsatile shear stress that mimics laminar flow in the straight parts of arteries or upstream of atherosclerotic stenosis sites, short-term exposure to oscillatory shear stress (OS) that mimics disturbed flow increased VWF secretion independent of affecting synaptosomal-associated protein 23 (SNAP23) expression and promoted the translocation of SNAP23 to the cell membrane. Vimentin associated with SNAP23, and this association was enhanced by OS or histamine. Acrylamide, a reagent that disrupts vimentin intermediate filaments, prevented histamine/OS-induced SNAP23 translocation, as well as VWF secretion. Immunofluorescence analysis revealed that the polarity of the vimentin intermediate filament network decreased after stimulation with histamine or OS. In addition, inhibition of protein kinase A (PKA) or G protein coupled receptor 68 (GPR68) eliminated the histamine/OS-induced phosphorylation of vimentin at Ser38 and secretion of VWF. Furthermore, syntaxin 7 might assist with the translocation of SNAP23 to the cell membrane, thus playing a role in promoting VWF secretion. The GPR68/PKA/vimentin signaling pathway may represent a novel mechanism for the regulation of SNAP23-mediated VWF secretion by ECs under OS and provide strategies for the prevention of atherosclerosis-related thrombosis.


Assuntos
Trombose , Fator de von Willebrand , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histamina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Mecanotransdução Celular , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estresse Mecânico , Trombose/metabolismo , Vimentina/metabolismo , Fator de von Willebrand/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810252

RESUMO

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Assuntos
Apigenina/genética , Apigenina/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células Endoteliais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aterosclerose , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Camundongos , Fenótipo , Fosforilação , Ligação Proteica , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
17.
Front Cell Dev Biol ; 8: 576826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224946

RESUMO

Disturbed blood flow has been recognized to promote platelet aggregation and thrombosis via increasing accumulation of von Willebrand factor (VWF) at the arterial post-stenotic sites. The mechanism underlying the disturbed-flow regulated endothelial VWF production remains elusive. Here we described a mouse model, in which the left external carotid artery (LECA) is ligated to generate disturbed flow in the common carotid artery. Ligation of LECA increased VWF accumulation in the plasma. Carotid arterial thrombosis was induced by ferric chloride (FeCl3) application and the time to occlusion in the ligated vessels was reduced in comparison with the unligated vessels. In vitro, endothelial cells were subjected to oscillatory shear (OS, 0.5 ± 4 dynes/cm2) or pulsatile shear (PS, 12 ± 4 dynes/cm2). OS promoted VWF secretion as well as the cell conditioned media-induced platelet aggregation by regulating the intracellular localization of vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Disruption of vimentin intermediate filaments abolished the OS-induced translocation of SNAP23 to the cell membrane. Knockdown of VAMP3 and SNAP23 reduced the endothelial secretion of VWF. Systemic inhibition of VAMP3 and SNAP23 by treatment of mice with rapamycin significantly ameliorated the FeCl3-induced thrombogenesis, whereas intraluminal overexpression of VAMP3 and SNAP23 aggravated it. Our findings demonstrate VAMP3 and SNAP23 as potential targets for preventing the disturbed flow-accelerated thrombus formation.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32671044

RESUMO

Atherosclerotic plaque preferentially develops in arterial curvatures and branching regions, where endothelial cells constantly experience disturbed blood flow. By contrast, the straight arteries are generally protected from plaque formation due to exposure of endothelial cells to vaso-protective laminar blood flow. However, the role of flow patterns on endothelial barrier function remains largely unclear. This study aimed to investigate new mechanisms underlying the blood flow pattern-regulated endothelial integrity. Exposure of human endothelial cells to pulsatile shear (PS, mimicking the laminar flow) compared to oscillatory shear (OS, mimicking the disturbed flow) increased the expressions of long non-coding RNA MALAT1 and tight junction proteins ZO1 and Occludin. This increase was abolished by knocking down MALAT1 or Nesprin1 and 2. PS promoted the association between Nesprin1 and SUN2 at the nuclear envelopes, and induced a nuclear translocation of ß-catenin, likely through enhancing the interaction between ß-catenin and Nesprin1. In the in vivo study, mice were treated via intraperitoneal injection with ß-catenin agonist SKL2001 or its inhibitor XAV939, and they were then subjected to Evans blue injection to assess aortic endothelial permeability. The aortas exhibited a reduced wall permeability to Evans blue in SKL2001-treated mice whereas an enhanced permeability in XAV939-treated mice. We concluded that laminar flow promotes nuclear localization of Nesprins, which facilitates the nuclear access of ß-catenin to stimulate MALAT1 transcription, resulting in increased expressions of ZO1 and Occludin to protect endothelial barrier function.

19.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397533

RESUMO

(1) Background: There are no successive treatments for heart failure with preserved ejection fraction (HFpEF) because of complex interactions between environmental, histological, and genetic risk factors. The objective of the study is to investigate changes in cardiomyocytes and molecular networks associated with HFpEF. (2) Methods: Dahl salt-sensitive (DSS) rats developed HFpEF when fed with a high-salt (HS) diet for 7 weeks, which was confirmed by in vivo and ex vivo measurements. Shotgun proteomics, microarray, Western blot, and quantitative RT-PCR analyses were further carried out to investigate cellular and molecular mechanisms. (3) Results: Rats with HFpEF showed diastolic dysfunction, impaired systolic function, and prolonged repolarization of myocytes, owing to an increase in cell size and apoptosis of myocytes. Heatmap of multi-omics further showed significant differences between rats with HFpEF and controls. Gene Set Enrichment Analysis (GSEA) of multi-omics revealed genetic risk factors involved in cardiac muscle contraction, proteasome, B cell receptor signaling, and p53 signaling pathway. Gene Ontology (GO) analysis of multi-omics showed the inflammatory response and mitochondrial fission as top biological processes that may deteriorate myocyte stiffening. GO analysis of protein-to-protein network indicated cytoskeleton protein, cell fraction, enzyme binding, and ATP binding as the top enriched molecular functions. Western blot validated upregulated Mff and Itga9 and downregulated Map1lc3a in the HS group, which likely contributed to accumulation of aberrant mitochondria to increase ROS and elevation of myocyte stiffness, and subsequent contractile dysfunction and myocardial apoptosis. (4) Conclusions: Multi-omics analysis revealed multiple pathways associated with HFpEF. This study shows insight into molecular mechanisms for the development of HFpEF and may provide potential targets for the treatment of HFpEF.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteoma , Transcriptoma , Animais , Apoptose , Ecocardiografia/métodos , Eletrocardiografia , Ontologia Genética , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Masculino , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos Dahl , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/toxicidade , Volume Sistólico , Análise Serial de Tecidos
20.
Cell Death Dis ; 11(1): 35, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959742

RESUMO

Vascular smooth muscle cell (SMC) from arterial stenotic-occlusive diseases is featured with deficiency in mitochondrial respiration and loss of cell contractility. However, the regulatory mechanism of mitochondrial genes and mitochondrial energy metabolism in SMC remains elusive. Here, we described that DNA methyltransferase 1 (DNMT1) translocated to the mitochondria and catalyzed D-loop methylation of mitochondrial DNA in vascular SMCs in response to platelet-derived growth factor-BB (PDGF-BB). Mitochondrial-specific expression of DNMT1 repressed mitochondrial gene expression, caused functional damage, and reduced SMC contractility. Hypermethylation of mitochondrial D-loop regions were detected in the intima-media layer of mouse carotid arteries subjected to either cessation of blood flow or mechanical endothelial injury, and also in vessel specimens from patients with carotid occlusive diseases. Likewise, the ligated mouse arteries exhibited an enhanced mitochondrial binding of DNMT1, repressed mitochondrial gene expression, defects in mitochondrial respiration, and impaired contractility. The impaired contractility of a ligated vessel could be restored by ex vivo transplantation of DNMT1-deleted mitochondria. In summary, we discovered the function of DNMT1-mediated mitochondrial D-loop methylation in the regulation of mitochondrial gene transcription. Methylation of mitochondrial D-loop in vascular SMCs contributes to impaired mitochondrial function and loss of contractile phenotype in vascular occlusive disease.


Assuntos
Metilação de DNA/genética , DNA Mitocondrial/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Animais , Becaplermina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Respiração Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Doenças Vasculares/genética , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...